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Abstract

In this paper we present an analytical solution to symmetrical water impact problems of a two-dimensional wedge.

Unlike previous studies, we have taken into account the effect of velocity reduction of the solid body upon impact in

order to determine impact pressure as well as the overall force acting on the body. This feature of our study provides a

better estimate of the transitory nature of the phenomenon and leads to a more precise evaluation of the true dynamic

load borne by the body. We obtained the solution to this problem through a generalization of the Wagner formulation

and the use of an existing analytical prediction model of the entry velocity of the wedge. This approach allows us to

obtain an original analytical equation for pressure in terms of the kinetics and geometrical parameters of the impact.

The validity of the proposed model is demonstrated by a favourable comparison between the analytical results and the

physical experiments carried out on several wedge models.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Several practical engineering cases require us to consider water impact pressure, as well as to have a working

knowledge of water entry dynamics. For example, this is the case for seaplane floats that undergo significant loading

during water landing, as well as for high-speed boats that frequently perform wave jumps from considerable heights.

Usually, this kind of problem is simplified as a two-dimensional solid dropped vertically onto a free and initially calm

water surface. Notwithstanding these simplifications, the solution to this type of problem remains complex, especially

with regard to transient fluid–structure interactions.

In 1929, von Karman introduced significant work on this subject. He developed an analytical formula which allows

estimation of the maximum pressure on seaplane floats during water landing (von Karman, 1929; Payne, 1988). In 1936,

Wagner modified the von Karman solution by taking into account the effect of water splash on the body (Wagner,

1936; Korobkin and Pukhnachov, 1988). This work was further developed by Howison et al. (1991), who introduced

the nonlinear effect of the water splash near the intersection point between the body and the water’s surface.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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In the special case of wedges entering water vertically at a constant velocity, Dobrovolskaya (1969) derived a similar

solution by making use of the simple geometry of the body. Although this solution is valid for any deadrise angle, it is

implicitly provided in terms of integral equations which must be solved numerically.

During the 1980s and following the developments recorded in the field of numerical calculation, several studies were

carried out for various increasingly complex impact configurations. To illustrate, we need only cite the works of

Armand and Cointe (1987) on a cylinder entering the water at a constant velocity; or the studies carried out by Troesch

and Kang (1987, 1990) on the three-dimensional aspect of hydrodynamic impact and flare slamming. They presented

theoretical, experimental and numerical results for a sphere and a cusped body which was axisymmetric and resembled

the bow profile of a ship with flare.

Zhao et al. (1993, 1996) introduced a complement to Wagner’s studies, with linear approximation of the free-surface

boundary condition for the two-dimensional impact problem. They solved the linearised problem for wedges and ship

bow-flare sections through a numerical procedure based on the boundary integral equation method.

More recently, Mei et al. (1999) proposed a purely analytical method of resolution for the global two-dimensional

impact problem of arbitrary bodies. They adopted the same assumptions and the same linearised formulation

of the problem as was used by Zhao et al. (1996). Then, they solved the problem analytically using the well-known

conformal mapping technique. This technique was adopted early on by several researchers such as Hughes (1972), who

developed a quasi-analytical solution to the classical hydrodynamic problem of the entry at constant velocity of a

prismatic wedge into an incompressible inviscid fluid. Fraenkel and McLeod (1997) also applied the conformal mapping

method to the boundary value problem formulated by Wagner (1936). They were thus able to derive an explicit

solution to the limiting case of an infinite wedge of vertex angle p. Later, Fraenkel and Keady (2004) studied the thin

wedge and the problem of the contact angle (the angle formed between the water’s free surface and the body’s

surface at the intersection point). They also used a conformal transformation to solve the problem. More recently,

Faltinsen (2002) used this transformation to analyse the water entry of a rigid wedge. In the study by de Divitiis and de

Socio (2002), they carried out a distribution of potential singularities in solving the so-called Wagner problem.

Further, the conformal transformation technique was adopted to determine the unknown intensities of the

discontinuities. These authors studied both the symmetrical and the asymmetrical entries at constant velocity of a

wedge-shaped body. Furthermore, it is worthwhile to note that all these results (Mei et al., 1999; Hughes, 1972;

Fraenkel et al., 1997, 2004; Faltinsen, 2002; de Divitiis and de Socio, 2002) specifically address the case of an impact at

constant velocity.

We should also mention the extensive analytical work that was done by Korobkin on the water impact of a rigid

body. His investigation on mathematical models for the prediction of the hydrodynamic pressure distribution and the

force on the body is essential (Korobkin, 1997, 2004). Along with Scolan he presented substantial analytical work on

three-dimensional water impact (Scolan and Korobkin, 2001; Korobkin and Scolan, 2006).

Finally, we will cite the exhaustive study by Faltinsen et al. (2004) which summarizes the most significant work

achieved on the impact phenomenon and its applications to marine engineering.

The study presented in this document draws its inspiration from the work of Mei et al. (1999). However, we focussed

on deriving an analytical solution for the general case of a wedge’s water impact at variable velocity. We used the same

linearised boundary-value formulation as Zhao et al. (1996). Then, we solved the linearised problem analytically using

conformal mapping techniques simultaneously with an analytical model predicting the entry velocity of the wedge

(Zhao et al., 1996; Mei et al., 1999). We wish to note, however, that the approach we suggest could be extended to the

more general case of arbitrary body geometry, through the use of a distinct model to estimate the body’s velocity upon

impact.

This paper is divided into four sections. In Section 2, we have formulated the linearised boundary-value

problem of the symmetrical water impact of a wedge at variable velocity. In Section 3, we have developed an improved

analytical solution based on the method suggested by Mei et al. (1999). In Section 4, we have described physical

experiments and compared experimental data with analytical results. Finally, our conclusions and comments are

presented in Section 5.
2. Formulating the problem

Let us consider the problem of two-dimensional vertical impact at arbitrary velocity of a symmetrical rigid wedge

onto an initially calm water surface. The solid body is considered to be symmetrical with respect to its vertical axis.

Upon introducing the Cartesian coordinate system (y, z), the y-axis lies on the undisturbed water surface and the z-axis

merges with the symmetry axis of the body (see Fig. 1); the body surface is represented by the equation h ¼ h(y), where h

denotes the vertical distance between a point on the wedge surface and its apex.
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Fig. 1. Parameters involved in the description of the water impact of a wedge at variable velocities.
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Considering the nature of the fluid and the mechanism being studied, we assume, as did the majority of the

researchers, the following traditional hypotheses: (i) the body is infinitely rigid; (ii) water is considered to be an

incompressible and nonviscous fluid; (iii) flow is irrotational; (iv) the effect of possible air trapped between the body and

the free surface of the water is negligible; (v) the free surface of the water is initially calm; (vi) gravitational force is

negligible compared to the body’s inertia; (vii) atmospheric pressure is equal to zero.

Thus, the continuity equation consists in determining a velocity potential f(y, z, t) which satisfies the Laplace

equation and the boundary conditions described below. This classical formulation of the problem has been stated

previously by several researchers (Wagner, 1936; Cappelli and Wilkinson, 1967; Li and Sigimura, 1967; Korobkin and

Pukhnachov, 1988). The two free-surface boundary conditions are written in the following form:

the kinematic free-surface boundary condition:

DZ
Dt
¼

qfðy; z; tÞ
qz

on z ¼ Zðy; tÞ, (1)

the dynamic free-surface boundary condition:

Df
Dt
�

1

2
ðf2

y þ f2
zÞ ¼ 0 on z ¼ Zðy; tÞ, (2)

where Z denotes the vertical coordinate of a point on the water free surface, and D/Dt denotes the substantial derivative.

The nonlinear terms in these two expressions constitute the major difficulty in solving the boundary value problem in an

analytical fashion. However, it is possible to make up for this difficulty by applying a few simplifications and a partial

linearisation of the problem. In fact, in his asymptotic solution, Wagner (1936) simplified the dynamic boundary condition thus:

fðy; z; tÞ ¼ 0. (3)

Then he applied it on the horizontal line that starts at the intersection point between the body and the free surface Z ¼ Z(Y, t).
The kinematic free-surface boundary condition was used to determine the intersection between the free surface and the body.

Later, Zhao et al. (1996) and Mei et al. (1999) used this same approach in their analyses. We must stress that the Dirichlet

condition (3) is applied to the horizontal plane passing through the intersection point Z ¼ Z(Y, t) and not on the exact free

surface z ¼ Z(y, t). This particular aspect of the linearised free-surface conditions makes it possible to take into account the

significant contribution associated with the wetted body surface above the initially undisturbed water surface. In other words,

this allows us to include the effect of the water splash. From there, and by applying these simplifications, the boundary value

problem amounts to the determination of the velocity potential f(y,z,t), thus satisfying:

the Laplace equation

Dfðy; z; tÞ ¼ 0, (4)

the linearised kinematic free-surface boundary condition

qZ
qt
¼

qfðy; z; tÞ
qz

on Z ¼ ZðY ; tÞ, (5)

the linearised dynamic free-surface boundary condition

fðy; z; tÞ ¼ 0 on Z ¼ ZðY ; tÞ (6)
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the kinematic body boundary condition

qf
qn
¼ �V ðtÞnz on SmðtÞ, (7)

the far-field condition

rf
�� ��! 0 as ðy2 þ z2Þ1=2 !1, (8)

and the initial condition

fðy; z; 0Þ ¼ 0 and Zðy; 0Þ ¼ 0 on z ¼ 0, (9)

where Sm(t) represents the instantaneous wetted body surface (see Fig. 1), V(t) is the instantaneous velocity of the

wedge upon impact, n ¼ (ny, nz) is the normal unit of the body surface.

It should be noted that the approximations carried out above are not valid for the flow near the apex of the water

splash. In this region, the free surface changes its shape sharply and its nonlinearity must be considered. However, we

know that the local jet flow is not very relevant from a practical point of view in estimating the impact pressure as well

as the slamming force on the body (Zhao and Faltinsen, 1993). We are thus able to ignore the thin-jet flow and consider

the global problem.

After obtaining the boundary-value solution and determining the function f, the pressure value can be calculated

using Bernoulli’s equation:

p ¼ �r ft þ
1

2
rf
�� ��2� �

, (10)

where r is the fluid density.

However, unlike the case studied by Zhao and Faltinsen (1993) and Mei et al. (1999), the instantaneous velocity of

the wedge V(t) is unknown in our case. Thus, in order to solve the linearised boundary-value problem, we first need to

evaluate the velocity variation of the wedge upon impact. This is made possible by applying the momentum theorem,

V ðtÞ ¼
V0

1þMa=M
, (11)

where V(t) is the instantaneous velocity of the wedge upon impact, V0 is the initial falling velocity of the wedge (at

t ¼ 0), M is the mass of the wedge, Ma is the added mass of the wedge.

The added mass of the wedge is calculated using the commonly used form (Zhao et al., 1996; Mei et al., 1999)

Ma ¼ Car Y ðtÞð Þ
2, (12)

where

Ca ¼
dp
2

1�
a
2p

� �2
; (13)

Y(t) represents the horizontal coordinate of the intersection point between the body and the free surface (see Fig. 1), a is
the deadrise angle of the wedge, and d is a correction factor taking into account the three-dimensional effects associated

with the non infinitely-long bodies used in the experiments. The factor d is obtained according to the suggestions made

by Zhao et al. (1996). It varies from 0.5 to 1, depending on the geometry of the body involved in the impact [for further

details about this correction factor, we advise readers to refer directly to Zhao et al. (1996), Meyerhoff (1970) and Yu

(1945)]. Just as Zhao et al. (1996) and Mei et al. (1999), in order to compare analytical results to experimental data, the

factor d will be considered in Eq. (13) to determine the analytical value of the coefficient Ca which will be used in Eq.

(12) to determine the value of the added mass Ma.

Equations (11)–(13) expressing the instantaneous velocity of the wedge and the added mass of the wedge are not new

equations. They have been used before by several researchers [e.g., Zhao et al. (1996) and Mei et al. (1999)] to estimate

the body’s velocity upon impact. In this study, we will also use them to determine the instantaneous velocity of the

wedge and hence in solving the linearised boundary value problem stated above. However, Eq. (11) is given in terms of

the horizontal coordinate Y(t) of the intersection point between the water’s surface and the wedge side which is a priori

unknown. Nevertheless, for bodies with smooth surfaces like wedges, this variable can be expressed analytically with the

help of some polynomial approximations.
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3. Analytical solution

3.1. Extension of previously obtained analytical results

In this section, we will extend the work of Mei et al. (1999) to include the more general case of variable velocity of a

wedge. In this case, we will use the same approach as the aforementioned authors. However, we re-emphasise that,

unlike the case studied by Mei et al. (1999), the effect of the variation of the body velocity will be taken into account in

determining instantaneous pressure distribution.

Consequently, as the application of the Dirichlet condition f ¼ 0 on the free surface Z ¼ Z(Y, t) suggests an

antisymmetry of the velocity potential f(y,z,t) with respect to this plane, the hydrodynamic images method and

conformal mapping technique are applied to the problem. The linearised boundary value problem can therefore be

considered as a rhombus moving in an infinite fluid field with a velocity V(t) corresponding to the actual velocity of the

wedge. This fictitious rhombus is made of the immersed segment of the real wedge and its symmetrical image around the

plane Z ¼ Z(Y, t). Its width depends on the value of Y(t) (see Fig. 2).

Since we are reintroducing this problem to a well-known hydrodynamic scenario, it is useful to apply the following

transformation:

y0 ¼ y, (14)

z0 ¼ z� ZðY ; tÞ, (15)

where

fðy; z; tÞ ¼ f0ðy0; z0; tÞ � V ðtÞz0. (16)

The conformal mapping technique is well suited to solving this kind of problem. By means of the mapping technique,

the unknown flow parameters in the physical plane will have a well-known correspondence to the complex plane. As

suggested by several researchers such as Hughes (1972), Fraenkel and McLeod (1997) and others, we will use the

Schwartz–Christoffel transformation which makes it possible to represent the flow with a velocity V(t) through a

rhombus in the physical plane (Z ¼ y0+iz0) by a vertical flow with a velocity U(t) in the mapped plane (W ¼ p+iq) (see

Fig. 3).

The relation between Z and W is expressed by

Z

Y ðtÞ
¼ A�1

Z W

0

w2

w2 þ 1

� �y

dwþ 1, (17)

where

A ¼ cos a
Z 1

0

w2

1� w2

� �y

dw (18)

and

y ¼
ðp� 2aÞ

2p
. (19)
Y (t)
Y (t)

z’ 

y’ 

z

y

V (t)
-V (t)

(a) (b)

Fig. 2. Symmetry and flow analogy principles.
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In the complex plane, the velocity potential is a known entity (Newman, 1977):

f0ðy0; z0; tÞ � FðZ; tÞ ¼ Re �iWf g
V ðtÞ Y ðtÞ

A
. (20)

The complex velocity of the flow can be obtained using transformation (17):

u� iv ¼
qF
qy0
� i

qF
qz0
¼ �iV ðtÞ Y ðtÞA�1

dW

dZ
¼ �iVðtÞ

W 2 þ 1

W 2

� �y

. (21)

When referring to situation (B) of Fig. 2 and to Eqs. (17) and (20), it appears obvious that the solution to the problem

is based on determining the exact geometry of the rhombus. In other words, to solve the problem analytically, we need

to know the time variation of the position at the intersection point Y(t).

For this purpose, we have used the very interesting method proposed by Mei et al. (1999). These authors developed a

polynomial expression of the height H(Y) of the intersection point (Y(t), Z(Y)) measured from the apex of the wedge.

This expression was used to obtain a polynomial relation between Y(t) and the constant velocity of the wedge. In our

case, although the speed of the wedge is variable, the Mei et al. method might be used to obtain another relation

between Y(t) and V(t) and hence, together with Eq. (11), it is possible to determine the two unknown variables, i.e. Y(t)

and V(t).

Since the aim of this paper is not to reproduce the work of Mei et al. (1999), we have provided a brief

description of the main steps of Mei’s method (see below). For further details, readers are referred directly to Mei et al.

(1999).

The authors of that study made use of the governing equation for the motion of the intersection point Y(t) to express

H(Y) in terms of the speed of the body and the vertical component of the velocity of the water’s surface at the

intersection point Y(t). Then they introduced the variable m(Y) which is defined by m(Y) ¼ V0 dt/dY. We should note

here that for the case studied by Mei et al. (1999), the speed of the body V0 is constant and well known at any time

during the impact process. In spite of this, we are nevertheless able to obtain the same relation for m(Y); however,

instead of a constant speed V0, we have a variable speed V(t) that can be determined using Eq. (11).

Since the solid studied by Mei et al. (1999) was (as in our case) a rigid wedge whose surface can be described by a

continuous function, they could therefore suppose that the intersection point Y(t) moves along the body surface in a

continuous manner. This enabled them to use the polynomial expansion of Chebyshev applied to the N first terms to

describe m(Y). This approximation is also valid for the case where the speed of the body V(t) is variable, so we used the

same approach as Mei et al. (1999) to obtain:

mðY Þ ¼ V ðtÞ
dt

dY
¼
XN�1
n¼0

bnY n. (22)

By integrating the expression above, we obtained the following relation between the quantity
R t

0 V dt and Y(t):Z t

0

V dt ¼
XN�1
n¼0

bn

nþ 1
Y nþ1. (23)
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To determine the progression of the intersection point Y(t) together with the instantaneous velocity of the wedge V(t),

we need to solve the following system of equations:

V ðtÞ ¼
V0

1þ CarðY ðtÞÞ2=M
;

Z t

0

V dt ¼
XN�1
n¼0

bn

nþ 1
Y nþ1. (24)

However, prior to this we first need to establish the value of the unknown coefficients bn. For this, we used the

Schwartz–Christoffel transformation properties. Since a variable speed does not introduce any changes to the

determination of the unknown coefficients bn, we obtain, like Mei et al. (1999), the same result for the coefficient bn:

b0 ¼
tanðaÞ

g
and bn ¼ 0 for na0, (25)

where a is the deadrise angle of the wedge; g denotes a dimensionless parameter that depends solely upon the deadrise

angle of the wedge; it measures the water’s splash onto the wedge. It can be provided directly from the following

equation obtained by Mei et al. (1999):

gðaÞ ¼ AðaÞ
Z 1

0

Z p

0

w2

w2 þ 1

� �y

dwþ AðaÞ

" #�2
dp. (26)

By replacing the values of the coefficients bn in Eq. (23), we finally obtain the time variation of the position of the

intersection point Y(t) in relation to the velocity V(t):

Y ðtÞ ¼
g

tanðaÞ

Z t

0

V ðtÞdt. (27)

In the Mei et al. model, the velocity of the wedge V0 is known and constant. The position of the intersection point

Y(t) can thus be obtained directly from the following equation [see Mei et al. (1999)]:

Y ðtÞ ¼
gðaÞ
tanðaÞ

V0t. (28)

For the case studied in this paper, the velocity of the wedge is unknown and variable over time. However, it is

possible to determine it simultaneously with the position of the intersection point Y(t). This can be done using the

following system formed by Eqs. (11) and (27):

V ðtÞ ¼
V0

1þ ðCarðY ðtÞÞ
2=MÞ

; Y ðtÞ ¼
g

tanðaÞ

Z t

0

V ðtÞdt. (29)

It is then possible to observe that the position of the intersection point Y(t) can be evaluated from the same equations

obtained in the particular case of the impact at constant velocity (Mei et al., 1999). The only difference lies in estimating

the penetration depth of the wedge from the initially undisturbed water surface. In the case of constant velocity, this

depth is expressed by the quantity (V0t) where V0 represents the constant velocity of the wedge. On the other hand, in

the case of a variable velocity, this depth is more exactly expressed by
R t

0 V ðtÞ dt.

The analytical solution to the above equation set leads to the solution of a nonlinear differential equation of the first

order for the unknown intersection point Y(t),

dY ðtÞ

dt
�

gðaÞMV0

tanðaÞ M þ Car Y ðtÞð Þ
2

� � ¼ 0. (30)

This equation can be further simplified to obtain

rCa

3
ðY ðtÞÞ3 þMY ðtÞ �

gMV0

tanðaÞ
t ¼ 0. (31)

It is worthwhile to note that Mei et al. (1999) introduced Eq. (31) to estimate the time variation of the external force

on the body for the impact of a free-falling wedge into water. For this purpose, they used the following equation:

dY

dt
¼

gðaÞ
tanðaÞ

V . (32)

The above equation was derived from Eq. (28), by replacing V0 with V. As well, it should be remembered that Eq. (28)

was obtained specifically for the case of a constant wedge speed. Then, to obtain Eq. (31), they combined Eq. (32) with

Eq. (11), which implicitly gives the time variation of the body’s speed in terms of the intersection point Y(t). Although
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the result obtained is completely accurate, as noted by the system of equations (29), the authors unfortunately did not

provide any explanation regarding the combination of two apparently nonhomogenous equations, since Eq. (28)

(derived from Eq. (32)) is used for constant impact velocity and Eq. (11) for variable impact velocity [see Mei et al.

(1999)]. Neither did they analyse the effect of the variation of the wedge speed on pressure distribution. Consequently,

we will present the effect of such a variation on the pressure estimation and compare it with Mei’s model (see below).

As stated in Section 2, to determine the instantaneous pressure distribution on the surface of the wedge, we must

replace the solution f of the boundary value problem in Bernoulli’s equation (10). To do this, as we have demonstrated,

the speed V(t) and the position of the intersection point Y(t) must be determined. This can be carried out using the

system of equations (29). However, the analytical solution to this system might lead to a lengthy expression of Y(t) and

thus an unwieldy expression of V(t). This tends to complicate the equations of the pressure distribution, making them

difficult to use. We therefore prefer solving the system in a numerical fashion. This is possible using any classical

method of numerical integration, such as Simpson’s method.

3.2. Determination of the pressure distribution

With Y(t) and V(t) as known entities, we can now replace them by their respective values in Eq. (20) to determine the

expression of the velocity potential f. Next, to obtain the distribution of pressure on the wedge, we simply need to

introduce the value of f in Bernoulli’s equation.

The pressure at any given point on the wedge in terms of the velocity potential f is expressed by

Pðy; z; tÞ

r
¼ �

qf
qt
�

1

2

qf
qy

� �2

þ
qf
qz

� �2
" #

¼ �
Df
Dt
� V ðtÞ

qf
qz
�

1

2

qf
qy

� �2

þ
qf
qz

� �2
" #

. (33)

By introducing variables f0, y0 and z0 defined by Eqs. (14)–(16) and knowing that

Dz

Dt
¼ �V ðtÞ and ZðY ; tÞ ¼ HðY Þ �

Z t

0

V dt,

Eq. (33) becomes

Pðy0; z0; tÞ

r
¼ �

Df0

Dt
�

1

2

qf0

qy0

� �2

þ
qf0

qz0

� �2
" #

� V ðtÞ
DHðY Þ

Dt
þ

1

2
ðV ðtÞÞ2 þ z0

DV ðtÞ

Dt
. (34)

Introducing the dimensionless pressure coefficient Cp, we obtain

Cp ¼ 2
Pðy0; z0; tÞ

r V ðtÞð Þ
2
¼ �

2

V ðtÞð Þ
2

Df0

Dt
�

1

V ðtÞð Þ
2

qf0

qy0

� �2

þ
qf0

qz0

� �2
" #

�
2

V ðtÞ

DHðY Þ

Dt
þ 1

( )

þ
2 z0

V ðtÞð Þ
2

DV ðtÞ

Dt

	 

. ð35Þ

Using Eqs. (20), (21) and (27) we can now rewrite Eq. (35) in terms of the parameters of the complex plane W:

Cp ¼
2g

A tanðaÞ
1� q2

q2

� �y Z 1

qj j

w2

1� w2

� �y

dw� q

" #
�

1� q2

q2

� �2y

� 2gþ 1

( )
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

CpMei

þ
2g

A tan ðaÞ
sin ðaÞ

Z q

0

w2

1� w2

� �y

dw� q

" #Z q

0

V ðtÞdt
DV ðtÞ

Dt

1

ðV ðtÞÞ2

( )
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

DCp

. ð36Þ

We now observe that the pressure coefficient represents the sum of two terms CpMei
and DCp. The term CpMei

represents the pressure coefficient obtained by Mei et al. (1999) for the particular case of wedges entering water

vertically at a constant velocity. Thus, the additional term DCp expresses the difference between the pressure coefficient

in this particular case (impact at constant velocity) and that of the more general case of a variable velocity. It should
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also be noted that, unlike CpMei
which depends only on the body geometry, DCp depends on the variation of the wedge’s

velocity in a non linear fashion. It represents the effect of the wedge’s deceleration on pressure distribution.

Finally, the total slamming force can be obtained by directly integrating pressure distribution with respect to the

wetted surface of the wedge:

F ðtÞ ¼ 2 cos ðaÞ
Z Z

SðtÞ

Pðl; tÞdS ¼ 2 cos ðaÞ
Z Y ðtÞ

0

Pðl; tÞdl; (37)

or by applying Newton’s second law,

F ðtÞ ¼M
dðV ðtÞÞ

dt
, (38)

where V(t) is the velocity of the wedge given by Eq. (11), M is the mass of the wedge.

3.3. Analysis of the variation of the pressure coefficient

We present below a brief study of the time variation of the dimensionless terms CpMei
and DCp as well as their sum,

i.e. coefficient Cp provided by Eq. (36). The effects of some slamming parameters such as the mass of the body, the drop

height and the deadrise angle of the wedge are also analysed.

The following curves are plotted in terms of the dimensionless entry depth x which represents the ratio of the height,

measured from the apex, of a given point on the wetted part of the wedge surface, to the penetration depth of the wedge

around the initially undisturbed water surface expressed by the integral
R t

0 V ðtÞ dt. In other words,

x ¼
hðl; tÞR t

0 V ðtÞdt
with 0plpY ðtÞ; (39)

hence

hð0; tÞR t

0 V ðtÞdt
pxp

hðY ; tÞR t

0 V ðtÞdt
thus 0pxpg. (40)

Fig. 4 shows the time variation of the dimensionless quantities Cp, CpMei
and DCp. It would appear that the absolute

value of DCp which represents the difference between the pressure coefficients Cp and CpMei
, increases over time.

However, this variation becomes very weak near the peak pressure point (at xE1.54) and at the wedge apex (at x ¼ 0).

The effects of the variation of the mass and drop height are very small and may be set aside as shown in Figs. 5 and 6.

Fig. 7 illustrates the effect of the deadrise angle of the wedge on Cp, CpMei
and DCp. It is evident that the smaller the

deadrise angle a, the stronger and shorter the peak. This was noticed previously by several researchers such as
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Dobrovolskaya (1969), Zhao and Faltinsen (1993) and others. In addition, it is also possible to note that the smaller the

angle a, the larger the value of DCp, and therefore the greater the difference between Cp and CpMei
. However, the fact

remains that close to the peak pressure point and in the vicinity of the wedge’s apex, this variation is very weak. This

discrepancy near the peak pressure point is about 1–10% of the value of CpMei
depending on the deadrise angle of the

wedge. Consequently, it is completely acceptable to set DCp aside and to consider the simplified formula, as expressed

by Eq. (41), for the prediction of the maximum value of the pressure coefficient Cp in the case of wedges entering water

vertically at variable velocities:

Cpmax
¼

2g
A tan ðaÞ

1� q2

q2

� �y Z 1

qj j

w2

1� w2

� �y

dw� q

" #
�

1� q2

q2

� �2y

� 2gþ 1

( )
for q ¼ 0. (41)
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Eq. (41) is of course limited to the prediction of the maximum value of the pressure coefficient which allows, upon

evaluation, a determination of the peak pressure value by using the following well-known formula:

PðY ; zmax; tÞ ¼
rðV ðtÞÞ2

2
Cpmax

. (42)

However, Eq. (41) cannot be used to evaluate the pressure distribution elsewhere on the wetted surface of the wedge,

because it would then be necessary to take DCp into account—which could potentially reach values amounting to about

30% of the value of CpMei
.

In fact, the results presented above suggest certain similarities between impact at constant velocity and impact at

variable velocity. Indeed, if at any given time t ¼ t, the velocity of the wedge in a transient flow Vtr(t) is equal to its

velocity Vp in a steady flow, then the pressure peaks at points Str2 and Sp2 are roughly identical (see Fig. 8).

Consequently, we may apply a type of quasi-steady approach to reasonably predict the maximum pressure on the body

surface. For this purpose, the instantaneous velocity V(t) of the wedge is used together with the CpMei
formula (Eq. (41))

which is established for a constant-velocity impact to obtain the maximum pressure at any given moment in time (t) of

the variable-velocity impact. Thus, the velocity V(t) is considered to be a constant-velocity water entry but it is not equal
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to the initial velocity V0. The change in speed V(t) over time is determined by solving the set of Eqs. (29). This procedure

is only used for the peak pressure estimation; elsewhere on the wetted part of the wedge’s surface (Str1oSoStr2), the

values of pressure associated with steady and transient flows are different. In this case, instead of Eq. (41), the use of Eq.

(36) is required to determine the pressure distribution.
4. Comparison to experimental data

4.1. Description of the experimental set-up

To validate the analytical results presented above, physical experiments have been carried out at the hydraulic

research laboratory of Université de Sherbrooke. A diagram of the experimental set-up is shown in Fig. 9. It consists of

a vertical shaft of 4m in length fixed to the bottom of a water channel of 2m in width, 30m in length and a maximum

depth capacity of 2m. The water level is set at 1m to allow drops from a maximum height (hc) of 1.3m. The wedge is

attached to a steel guiding structure that slides along the shaft. As shown in Figs. 9 and 10, the wedge apex is aligned

perpendicularly to the longitudinal axis of the water channel.

Five different wedges made from a 19mm (3/4 inch)-thick plywood board were used. The wedge angle varied from

151 to 351 as shown in Fig. 11. The wedge walls were rigid and waterproof. All wedges had a square top section of

1.2m� 1.2m that could support additional steel parts with masses of 40, 80 and 120 lbm respectively (mass unit of the

British Engineering System; 1 kg ¼ 2.205 lbm). Note that because of their respective geometry, the initial wedge weights

differed.
Base fixed to 

bottom 

Cable position

transducer Cable  

Sliding 

mechanism

Pressure

transducers 

Wedge 

attachment 

clamp

Wedge 

Water height

he = 1 m

Drop height  
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1
 = 1.30 m,  

hc
2
 = 1.00 m

Length of the Water channel l = 30 m  

Main post

Fig. 9. Diagram of the experimental set-up.
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Fig. 10. Photograph of the experimental set-up installed in a water channel.
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4.2. Instrumentation

To measure the time variation of the pressure distribution, we used 12 Wheatstone bridge AB/HP Data Instruments

pressure transducers. The pressure range of these transducers is 0–500psi (pressure unit of the British Engineering System:

1psi ¼ 1 lb/in2 ¼ 6894.76N/m2) and the diameter of each one is 19mm. They were distributed along the median line on one

side of the wedges. The distance between each transducer was 50mm, as shown in Fig. 11. They were numbered 1–12, with

number 1 located near the wedge apex. The first natural frequency of the transducers was 10kHz.

To measure the instantaneous position and velocity of the wedge, we used a potentiometric cable extension

transducer Celesco model PT5A100S47FR1KM6. Its useful range and precision are provided by the manufacturer and

are approximately 2.5m and 70.1%, respectively. The transducer position raw data were low-pass filtered using a cut-

off at 45Hz to remove spurious noise generated by slight vibrations of the cable. We calculated velocity using a

numerical differentiation of the position signal.

Data acquisition was performed using a 16-channel data acquisition system model eDAQ manufactured by Somat

Inc. Two 8-channel Low Level Boards designed for the measurement of Wheatstone bridges were used. Full bridge

configuration was used. Sampling frequency on every channel was set at 5 kHz.
4.3. Accuracy and sampling frequency

Preliminary tests were carried out to verify measurement accuracy and repeatability. In particular, the objective of

these tests was to ensure the sufficiency of the selected sampling frequency. For this purpose, we used a HP35665A

signal analyser designed for signal sampling at very high sampling frequencies. Moreover, the most severe impact case

was considered, i.e., the impact of a wedge of a deadrise angle a ¼ 151 and a drop height hc ¼ 1.30m. The pressures

recorded by the first two transducers closest to the apex of the wedge were analysed. To check the validity of the chosen

sampling frequency, we used the well-known Nyquist–Shanon theorem which stipulates that to accurately measure a

dynamic signal whose highest natural frequency (Nyquist frequency) is fn, it is necessary to use a sampling frequency fs
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that is equal to or greater than 2fn. Consequently, to verify that the selected sampling frequency of 5000Hz is sufficient,

we have to ensure that the Nyquist frequency of the studied impact is lower than 2500Hz. To verify this condition, we

considered the signal recorded using the HP analyser to be the raw signal, knowing that its sampling frequency is

approximately 260 kHz. Then, to this signal we applied a low-pass numerical filter whose cut-off frequency is 2200Hz.

Figs. 12 and 13 present a comparison between the raw signal and the filtered signal recorded by the transducers no. 1

and 2 for the three identical impact tests.

According to these figures, it is evident that filtering the raw signal at a cut-off frequency of 2200Hz does not distort

the measured pressures. The filtered signal remains satisfactory compared to the raw signal. The computed relative

errors related to the peak pressure are approximately 5% for transducer no. 1 and 3% for no. 2. As a result, it is

possible to conclude that the highest significant natural frequency of such an impact is lower than 2200Hz. In fact, we

obtain satisfactory results for the filtered signal until cut-off frequencies of about 1500Hz, where the relative error in the

evaluation of the peak pressure starts to become significant (greater than 10% for transducer no. 1.)

Consequently, to properly measure the pressure of such an impact, a sampling frequency equal or greater than twice

the cut-off frequency fc ¼ 2200Hz is sufficient. A sampling at 5000Hz is thus acceptable and enables us to obtain

correct and reliable measurements with a certain degree of confidence. In addition, it is worthwhile to note the

satisfactory repeatability of peak pressures for the same configuration and impact parameters (deadrise angle and mass

of the wedge and drop height). This is valid for the pressures measured using transducer no. 1 as well for those recorded

by transducer no. 2 (see Figs. 12 and 13). We also note that these preliminary results are related to the most severe

impact cases encountered during the experiments, namely, a wedge with a deadrise angle a ¼ 151 and a drop height

hc ¼ 1.30m. For other configurations (particularly for higher values of angle a), the relative error in the evaluation of

maximum pressure associated with the selected sampling frequency decreases noticeably.
4.4. Test configurations

We used several test configurations, based on the modification of one test parameter at a time. The parameters under

consideration were:
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(i)
 5 wedge angles: a ¼ 151, 201, 251, 301, 351;
(ii)
 2 drop heights: hc ¼ 1.0m et 1.3m;
(iii)
 several masses of the slamming body were tested, consisting of the wedge, the sliding mechanism and additional

masses details are presented in Table 1.
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The wedges were launched vertically from a static position. Five wedges were employed along with four different

masses and two drop heights, for a total number of 40 test configurations. To ensure more accurate results, the final

data for each configuration were determined from an average of 10 identical tests. It should be noted that measures of

identical tests are fairly close (see Figs. 12 and 13). An experimental analysis of uncertainty enabled us to estimate an

uncertainty of 7% with a 90% degree of confidence.
4.5. Discussion

Concerning the instantaneous velocity of the wedge, it is possible to observe (according to Fig. 14) a correlation

between the analytical model of Zhao et al. (1996) expressed by Eq. (11) and the experimental data on velocity. It is

obvious that this model is valid for describing the motion of the wedge at the initial stage of the slamming process,

which is of fundamental interest and practical concern because the wedge’s velocity and therefore its kinetic energy

decrease by over 80% after only 45ms from the beginning of impact.

To compare the analytical results with the experimental data, we plotted curves expressing the pressure coefficient

variation for each of the five test models. Analytically, the coefficient Cp is provided by Eq. (36). Experimentally, Cp is

obtained by dividing the values measured by the pressure transducers, using the term 1
2
r V2ðtÞ, where V(t) is the

instantaneous velocity of the wedge measured by means of the cable position transducer and where r denotes the water

density.
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wedge mass m ¼ 94 kg; drop height hc ¼ 1.3m).

Table 1

Mass of the experimental slamming bodies

Wedge deadrise angle a Total mass of the slamming test bodies (kg) (including wedge mass, guiding system mass and additional

masses)

151 89 107 125 143

201 89 107 125 143

251 94 112 130 148

301 99 117 135 153

351 104 122 140 158
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To represent the analytical results as well as the experimental data in a dimensionless manner, we plot the variation of

the coefficient Cp in terms of the dimensionless entry depth x.
Fig. 15 thus represents the values of the pressure coefficient in terms of the dimensionless entry depth x at different

times of impact. The total uncertainty is estimated to be approximately 10% for Cp and 6% for x.
As previously stated, a discrepancy can be observed between the analytical predictions of the dimensionless pressures

Cp and CpMei
(see Fig. 15). This difference is negligible at the beginning of the impact (approximately at to1ms).

However, the discrepancy becomes increasingly significant over time. It should be noted, on the other hand, that near

the apex and peak pressure, this discrepancy between the two pressure coefficients is less significant than elsewhere on

the wetted part of the wedge’s surface. We also note that the smaller the deadrise angle a, the sharper the profile of the
pressure coefficient and the more significant its peak becomes. According to Fig. 15, it is obvious that Eq. (36) allows

the estimation of the pressure coefficient with much more precision than Mei’s model (Eq. (41)). However, the latter is

more appropriate, with slight uncertainty, for the evaluation of the maximum value of the pressure coefficient Cpmax
.

For this, Fig. 16 demonstrates a comparison between experimental data of the maximum values of the pressure

coefficient and the analytical predictions given by Eqs. (36) and (41), the similarity solution and Wagner’s asymptotic

method (Faltinsen, 2000), for several values of the deadrise angle of the wedge.

Concerning the pressure distribution, Figs. 17–21 show a correlation between the analytical estimates of the

slamming pressure and the experimental data collected directly from the pressure transducers. For reasons of clarity,

the pressure distribution is represented at only four different moments during the entry phase. We also plot

experimental and analytical curves connecting the maximum values of the pressure. Although we note a small
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wedges with deadrise angles uniformly distributed between 151 and 351; additional mass m ¼ 120 lbm has been added to each wedge;

drop height hc ¼ 1.30m; curves plotted at t ¼ 30ms).
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Fig. 17. Comparison between experimental results and analytical model predictions for the pressure distribution on the face of the

wedge at different moments of the entry phase (wedge deadrise angle a ¼ 151; wedge mass m ¼ 143 kg; drop height hc ¼ 1.3m).
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discrepancy between the analytical and experimental maximum values for pressure upon initial impact (to10ms) and

particularly for a deadrise angle a ¼ 151 or 201 (see Figs. 17 and 18), we can nevertheless state that the analytical model

provides a satisfactory description of the pressure distribution on a wedge entering water vertically after a free fall from

a given drop height.
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Fig. 18. Comparison between experimental results and analytical model predictions for the pressure distribution on the face of the

wedge at different moments of the entry phase (wedge deadrise angle a ¼ 201; wedge mass m ¼ 143 kg; drop height hc ¼ 1.3m).
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Fig. 19. Comparison between experimental results and analytical model predictions for the pressure distribution on the face of the

wedge at different moments of the entry phase (wedge deadrise angle a ¼ 251; wedge mass m ¼ 148 kg; drop height hc ¼ 1.3m).
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Once the pressure distribution is determined, it is easy to obtain the total slamming force acting on the body. Fig. 22

presents a comparison between analytical results obtained by direct integration of the pressure distribution with respect

to the wetted surface of the wedge (see Eq. (37)) and those obtained using Newton’s second law (see Eq. (38)). A

discrepancy between these two estimation methods is shown in Fig. 22. This difference is due to the error related to the

numerical integration of the pressure distribution. However, the maximum value of the force acting on the body can be

satisfactorily estimated using either method. A relative error of approximately 5% between the two peaks was recorded.
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Fig. 20. Comparison between experimental results and analytical model predictions for the pressure distribution on the face of the

wedge at different moments of the entry phase (wedge deadrise angle a ¼ 301; wedge mass m ¼ 153 kg; drop height hc ¼ 1.3m).
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Fig. 21. Comparison between experimental results and analytical model predictions for the pressure distribution on the face of the

wedge at different moments of the entry phase (wedge deadrise angle a ¼ 351; mass of the wedge m ¼ 158kg; drop height hc ¼ 1.3m).
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5. Conclusion

Unlike most analytical studies carried out on water impact where the velocity of the body is assumed to be constant,

the analysis presented in this paper takes into account the effect of body deceleration upon impact. We have developed

an analytical model (Eq. (36)), making it possible to evaluate the pressure coefficient in the general case of the

symmetrical two-dimensional water impact at variable velocity of a rigid wedge. For this purpose, the free-surface
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Fig. 22. Comparison between analytical results for the instantaneous force on the dropping wedge obtained using Eqs. (37) and (38)

(wedge deadrise angle a ¼ 301; wedge mass m ¼ 153 kg; drop height hc ¼ 1.3m).
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boundary conditions have been linearised and the body boundary condition has been satisfied in a rigorous manner.

The effect of thin-jet flow at the apex of the water splash has, however, been set aside. The solution has been obtained

by means of an analytical method based on the conformal mapping technique. Nevertheless, a solution could not have

been reached without the use of a different analytical model allowing the estimation of the wedge’s instantaneous

velocity. For this purpose, we used the Zhao et al. (1996) analytical model. The analytical model presented herein

highlights the fact that the pressure coefficient roughly preserves the same values at the pressure peak and at the wedge

apex. Otherwise, between these two positions the values of the coefficient decrease over time and are dependent on

certain parameters of impact, such as body mass and initial impact velocity. This constitutes the main difference

between an impact at constant velocity and an impact at variable velocity.

The analytical results have been confirmed by successfully comparing them to experimental data collected from

physical tests carried out on several wedges and with different configurations (several masses, drop heights and deadrise

angles). This analytical method represents a significant practical tool, making it possible to evaluate the pressure

distribution and the slamming force without having to resort to complex nonlinear numerical simulations.
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